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Abstract
In this paper, we study the topological entanglement of uniform random
polygons in a confined space. We derive the formula for the mean squared
linking number of such polygons. For a fixed simple closed curve in the
confined space, we rigorously show that the linking probability between this
curve and a uniform random polygon of n vertices is at least 1 − O

(
1√
n

)
. Our

numerical study also indicates that the linking probability between two uniform
random polygons (in a confined space), of m and n vertices respectively,
is bounded below by 1 − O

(
1√
mn

)
. In particular, the linking probability

between two uniform random polygons, both of n vertices, is bounded below
by 1 − O

(
1
n

)
.

PACS numbers: 02.40.Sf, 02.10.Kn, 82.35.−x
Mathematics Subject Classification: 57M25

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Synthetic polymers and biopolymers are long thin molecules that, under appropriate
experimental conditions, can be intermingled with themselves or other molecules. Quenching
processes of synthetic polymer melts trap the microscopic entangling of polymer strands, and
it is believed that these entanglements affect the rheological properties of the material [8, 15].
For instance semicrystalline polyethylene consists of alternating amorphous and crystalline
regions. Polyethylene chains extend in and out of the crystalline regions into the amorphous
regions. These chains can either penetrate into the next crystalline region or return to the
region where they originated. In the latter case the chains form loops that may intermingle
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with other loops forming nontrivial links [5, 6]. In the case of biopolymers, entangling
of DNA in the form of knots and links provides information about biological processes of
recombination [20], segregation [7] and chromosome organization [1]. Similarly, knots and
links in proteins and RNA are believed to reflect functional properties of the folded chain
[14, 21]. Linking of DNA chains is particularly relevant in chromosome biology. The end
products of replication in Escherichia coli are two linked circles. Resolution of this topological
problem is essential to ensure cell division. An extreme case of linked replication products is
found in the mitochondria of trypanosomes. This organism contains a large network of circles
comprising several thousands of linked DNA molecules called kinetoplasts (reviewed in [18]).

These physical and biological systems motivate our study. The study of linking between
ring polymer chains dates back more than two decades ago [10], and the linking of DNA chains
in free solution has also been studied previously, see for example [3, 12] and the references
therein. These studies have shown that the linking probability of two chains depends on the
distance between the centre of masses between the two polymer chains and for DNA chains
also on the volume exclusion of the DNA molecule and on the degree of supercoiling [22].

An important factor contributing to the formation of links in physical and biological
systems is the spatial confinement of molecules. This consideration is particularly relevant
in biological systems where genomes are condensed up to 104 times to fit in the cell nucleus
(reviewed in [9]). Here we address the problem of linking of polymer chains in confined
volumes.

Linking of fibres in confined volumes has been previously studied for chains in the simple
cubic lattice [17] but remains mostly unexplored for chains in R3. Furthermore, the actual
physical parameters, such as chain flexibility, of synthetic polymers and biopolymers confined
to small volumes are mostly unknown. Here we use the uniform random polygon (URP)
model. The URP model was first introduced to analyse knot distributions in confined volumes
[16]. Results using the URP model are qualitatively very similar to those using other polymer
models [1, 13]. Therefore, although our aim in this work is not to provide a realistic model
for polymer chains in confined volumes, we believe that the URP model will yield results that
are qualitatively similar to those obtained using other models. Furthermore, the URP model
provides a reference system that can be theoretically checked.

First, we rigorously show that the linking probability of two chains, one with fixed length
and another with variable length n, confined to a box of fixed size increases to 1 with a rate at
least of 1 − O

(
1√
n

)
. Next, we carry out extensive numerical studies of the linking probability

of two confined uniform random polygons of any lengths n and m and propose that the linking
probability should increase with the rate at least of 1−O

(
1√
nm

)
. We finish by discussing open

questions and possible extensions of this work.

2. Uniform random polygons in a confined space

For the sake of simplicity, throughout this paper, we will use the unit cube [0, 1]3 as our
confining space. However, our approach and results will apply to other confining spaces such
as the unit ball or any symmetric convex set in R

3, modulo some constant coefficient. For
i = 1, 2, . . . , n, let Ui = (ui1, ui2, ui3) be a three-dimensional random point that is uniformly
distributed in the unit cube C3 (or in a unit ball) such that U1, U2, . . . , Un are independent. Let
ei (called the ith edge) be the line segment joining Ui and Ui+1, then the edges e1, e2, . . . , en

define a uniform random polygon Rn in the confined space, where en is the line segment
joining Un and U1. Figure 1 shows two uniform random polygons in red and green. Volumes
of the polygons are included only for illustrative purposes and are not considered in this study.
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Figure 1. A uniform random link of two components confined in a cube generated by the URP
model.

+

Figure 2. Assignment of ±1 at a crossing. The sign for any two edges whose relative position is
as shown in the figure is determined by the right-hand rule.

Throughout this paper, uniform random polygons are always assumed to be confined in the
unit cube.

Remark. The URP model is very different from the usually studied models such as the
equilateral random polygons and Gaussian random polygons. Like the Gaussian random
polygon model, the URP does not have a fixed bond length. However, for large n, one could
think of the bond length of an Rn as the average distance d between two independent and
uniform random points in the unit cube (or the confining space), since the length of Rn is close
to nd (with a large probability) if n is large. The obvious advantage of the URP model is that it
is very easy for simulation purposes as well as theoretical reasoning, so that simulation results
can be checked using theoretical reasoning.

3. The mean squared linking number of two equal length uniform random polygons
in a confined space

Use the xy-plane as the projection plane, we will need to study the projection diagram of
Rn under this projection. It is not hard to show that with probability 1, this projection is a
regular projection (that is, there are no crossing points of multiplicity more than 2). First, let
us consider the case when there are only two (independent) oriented random edges �1 and �2.
Since the end points of the edges are independent and are uniformly distributed in C3, the
probability that the projections of �1 and �2 intersect each other is a positive number, which we
will call 2p. Assume that �1 and �2 are oriented. Define a random variable ε in the following
way: ε = 0 if the projection of �1 and �2 have no intersection, ε = −1 if the projection of
�1 and �2 has a negative intersection and ε = 1 if the projection of �1 and �2 has a positive
intersection. For the definition of positive and negative intersections, see figure 2.

By symmetry, we then see that P(ε = 1) = P(ε = −1) = p. It follows that E(ε) = 0
and V ar(ε) = E(ε2) = 2p.
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Figure 3. For each configuration of �1, �
′
1 and �′

2 for which ε1ε2 �= 0, there are eight symmetric
ways of assigning the order of the vertices to them (i.e., the orientations of them). Four of them
yield ε1ε2 = −1 and four of them lead to ε1ε2 = 1.

In this section, we consider the mean squared linking number of two equal length uniform
random polygons in the confined space C3. We will need the following lemma which concerns
the case when there are four edges (some of them may be identical or have a common end
point) involved: �1, �2, �

′
1 and �′

2. Let ε1 be the random number ε defined above between �1

and �′
1 and let ε2 be the random number defined between �2 and �′

2.

Lemma 1. (1) If the end points of �1, �2, �
′
1 and �′

2 are distinct, then E(ε1ε2) = 0 (this is the
case when there are eight independent random points involved);

(2) If �1 = �2, and the end points of �′
1 and �′

2 are distinct (this reduces the case to where
there are only three random edges, with six independent points, involved), then E(ε1ε2) = 0;

(3) In the case that �1 = �2 and �′
1 and �′

2 share a common point (so there are only five
independent random points involved in this case), let u = E(ε1ε2) and in the case that �1

and �2 share a common point, �′
1 and �′

2 also share a common point (so there are four edges
defined by six independent random points involved in this case), let E(ε1ε2) = v. We have
q = p + 2(u + v) > 0, where p is as defined before.

Proof. (1) This is obvious since ε1 and ε2 are independent random variables in this case.
(2) For each configuration in which the projections of �′

1 and �′
2 both intersect the projection

of �1 (since otherwise ε1ε2 = 0), there are eight different ways to assign the orientations to the
edges (see figure 3). Four of them yield ε1ε2 = −1 and four of them lead to ε1ε2 = 1. Since
the joint density function of the vertices involved is simply 1

V 6 , where V is the volume of the
confined space C3, thus by a symmetry argument, we have E(ε1ε2) = 0.

(3) Consider the case when there are two random triangles involved. Orient them and
name the edges of the first triangle �1, �2 and �3. Similarly, name the edges of the second
triangle �′

1, �
′
2 and �′

3. Let εij be the crossing sign number ε between the edges �i and �′
j .

Consider the variance of the summation
∑3

i,j=1 εij (the summation indices are taken using
mod (3)):

V


 3∑

i,j=1

εij


 = E





 3∑

i,j=1

εij




2



=
3∑

i,j=1

E
(
ε2
ij

)
+ 2

3∑
i=1

(E(εij εi(j−1)) + E(εij εi(j+1)))

+ 2
3∑

i=1

(E(εij εi+1,j+1 + E(εij εi−1,j+1)).
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Since the εij ’s are identical random variables, i.e., they have the same distributions, each
term in the first summation of the right-hand side in the above yields 2p, each term in the
second summation yields u (see lemma 1) and each term in the third summation yields v.
There are 9 terms in the first summation and 18 terms in the second and third summation. This
leads to V

( ∑3
i,j=1 εij

) = 18p + 36(u + v) = 18(p + 2(u + v)). Since V
(∑3

i,j=1 εij

)
> 0, this

implies that p + 2(u + v) > 0, as claimed. �

Let us consider the case of two uniform random polygons R1 and R2, each of n vertices.
Name the edges of R1 and R2 by �1, �2, . . . , �n, and �′

1, �
′
2, . . . , �

′
n such that this order matches

the order inherited from the orientations of the polygons. As in the proof of lemma 1, let εij

be the crossing sign number between �i and �′
j . Then the linking number between R1 and

R2 is defined as 1
2

∑n
i,j=1 εij . The linking number between two polygons is a well-known

topological invariant. That is, the linking number computed from any regular projection (in
which only double crossings occur) of two polygons topologically equivalent to the original
ones stays the same. Applying lemma 1 to this case, we obtain the following theorem.

Theorem 1. The mean squared linking number between two uniform random polygons R1

and R2 of n edges each (in the confined space C3) is 1
2n2q where q = p + 2(u + v) > 0 is as

defined in lemma 1. Similar results hold if C3 is replaced by a symmetric convex set in R
3.

Proof. Name the edges of R1 and R2 by �1, �2, . . . , �n, and �′
1, �

′
2, . . . , �

′
n such that this order

matches the order inherited from the orientations of the polygons. Since the linking number
between R1 and R2 is 1

2

∑n
i,j=1 εij , it is easy to verify that

E





1

2

n∑
i,j=1

εij




2

 = 1

2
n2q.

�

Remark. Note that if we consider the mean squared crossing number instead, then we would
get a number of the order O(n4) since one would expect that two typical uniform random
polygons in a confined space to have an average of O(n2) crossings in a projection of it. In
a sense, the mean squared linking number behaves more like the mean ACN of a random
polygon in R

3 without restriction. See [4].

Remark. In our numerical study we estimated that p = 0.115 ± 0.002, u = −0.0526 ±
0.006, v = 0.012 ± 0.005 and q = 0.0338 ± 0.024.

4. The linking probability of a uniform random polygon with a fixed simple closed
curve in a confined space

In this section, we consider the topological entanglement of a uniform random polygon and a
fixed simple closed curve in a confined space.

Before we move forward, we will state the following crucial theorem from probability
theory due to Charles Stein [19].

Theorem 2. Let x1, x2, . . . , xn be a sequence of stationary and m-dependent random variables
such that E(xi) = 0, E

(
x2

i

)
< ∞ for each i and

0 < C = lim
n→∞

1

n
E


(

n∑
i=1

xi

)2

 < ∞,
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then 1√
nC

∑n
i=1 xi converges to the standard normal random variable. Furthermore, if we let

�(a) = 1√
2π

∫ a

−∞ e− x2

2 dx be the distribution function of the standard normal random variable,
then we have ∣∣∣∣∣P

(
1√
nC

n∑
i=1

xi � a

)
− �(a)

∣∣∣∣∣ � A√
n

for some constant A > 0.

For simplicity, we will assume that the confined space is the cube given by the set{
(x, y, z) : − 1

2 � x, y, z � 1
2

}
and assume that the simple closed curve is the circle S on the

xy-plane whose equation is x2 + y2 = r2, where r > 0 is a constant that is less than 1/2.
As we did in the last section, we will let εj be the sum of the ±1 assigned to the crossings
between the projections of j th edge �j of Rn and S, we need to take the sum since in this case
the projection of �j (onto the xy-plane) may have up to crossings with S. It is easy to see that
εj = 0,±1,±2 for each j , the εj s have the same distributions and by symmetry that we have
E(εj ) = 0 for any j . It is obvious that if |i − j | > 1 mod(n), then εi and εj are independent,
hence we have E(εiεj ) = 0. By a similar argument as we did in the last section, we have
p′ + 2u′ > 0, where p′ = E(ε2

1) and u′ = E(ε1ε2). It follows that

0 < C = 1

n
E





 n∑

j=1

εj




2

 = p′ + u′

for any n. If we ignore the last term εn in the above, then we still have

0 < C = lim
n→∞

1

n
E





n−1∑

j=1

εj




2

 = p′ + u′.

Furthermore, it is obvious that the sequence ε1, ε2, . . . , εn−1 is a stationary and 2-dependent
random number sequence since εj s have the same distributions, and what happens to ε1, . . . , εj

clearly do not have any affect to what happens to εj+2, . . . , εn−1 (hence they are independent).
By theorem 2, there exists a constant A > 0 such that∣∣∣∣∣P

(
1√
nC

n−1∑
i=1

εi � a

)
− �(a)

∣∣∣∣∣ � A√
n
,

where �(a) is the standard normal distribution function. It follows that

P(Lk(S, Rn) �= 0) = P

(
n∑

i=1

εi �= 0

)

� 1 − P

(
−a − 2√

nC
� 1√

nC

n−1∑
i=1

εi � a +
2√
nC

)

� 1 −
(

�

(
a +

2√
nC

)
− �

(
−a − 2√

nC

))
− 2

A√
n
,

where Lk(S, Rn) is the linking number between S and Rn and a > 0 is an arbitrary number
(since |εn| � 2). It follows that P (the linking number between S and Rn �= 0) � 1 − O

(
1√
n

)
.

So the linking probability between S and Rn approaches 1 at the rate of 1 − O
(

1√
n

)
.

We list this result as the following theorem.
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Theorem 3. Let S and Rn be as defined in this section, then as n approaches infinity, the
probability that S and Rn form an unsplittable link approaches 1 at the rate at least 1−O

(
1√
n

)
.

Remark. Ideally, we would like to prove theorem 3 for the case of two uniform random
polygons. In fact, our numerical results in section 6 strongly suggest that the linking probability
between two uniform random polygons (with n and m vertices respectively) is at least of the
rate 1−O

(
1√
mn

)
. Unfortunately, we are unable to prove this rigorously at this time. Although

it seems that the convergence of 1
n
√

2q

∑n
i,j=1 εij can be determined by a simple application

of the central limit theorem, it is actually not quite so simple. This is mainly because of
the dependency among the random numbers εij (defined in the last section), which is a major
problem in proving any central limit theorem in probability theory. It is probably why theorem 2
was regarded as a big breakthrough at the time it was published. We are able to prove theorem 3
because the random variables εj turned out to be 2-dependent and stationary so we were able
to apply theorem 2. But the random variables εij are not m-dependent for any fixed m. One
may try to separate the εij s into disjoint groups and take the sum of each group in a hope
that these sums turn out to be m-dependent for some fixed m so theorem 2 can be applied.
Unfortunately, that does not work either. An interested reader may try this for him/herself
to be convinced. Thus, a rigorous proof for theorem 3 in the case of two uniform random
polygons has to wait for the development of a suitable central limit theorem that does not
require m-dependency of the random variables. Proving such a theorem is a serious undertake
in probability theory and is beyond the scope of this paper and the expertise of the authors.

The fixed curve S does not have to be symmetric. As long as it is placed in the cube such
that the projection of it to the xy-plane is regular and that the intersection of any line segment
with its projection can have at most a constant number of intersections, and that there is a
positive probability that Rn can form an unsplittable link with S, the result of theorem 3 will
hold. The setting in the theorem is to make the proof less complicated and tedious. We will
state this as the following theorem.

Theorem 4. If S ′ is a fixed simple closed curve and R′
n is a uniform random polygon of n

vertices, both confined in (the interior of) a symmetric convex set of R
3, then the probability

that S ′ and R′
n form a unsplittable link approaches 1 at the rate at least 1 − O

(
1√
n

)
.

5. Numerical methods

The generation of uniform random polygons is straightforward. Each coordinate of a vertex
of the uniform random polygon of n edges was drawn from a uniform distribution over [0, 1].
Although in this paper we only considered polygons confined in rectangular boxes, spheres
or other convex confining volumes can be easily implemented and one should expect similar
results.

We estimated the linking probability of two polygons by computing their linking number.
It is known that if the linking number between two polygons is not zero, then the two polygons
are non-trivially linked. In this case the two polygons are said to be homologically linked.
Nevertheless there exist nontrivial links whose linking number is zero. In this case the polygons
are topologically linked but are not homologically linked. It turns out that the linking number is
very effective in detecting linking, as our numerical simulations later show that the probability
of two uniform random polygons (of n and m vertices each) being homologically linked
approaches 1 with the rate of 1 − O

(
1√
mn

)
. This matches the observation in [17] for the case

of two lattice polygons tightly confined in a box. It is quite conceivable that the probability of
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Figure 4. The plot of P(linking # �= 0). The x-axis represents the number of vertices of the
uniform random polygon and the y-axis the probability P(linking # �= 0).

two uniform random polygons being topologically linked approaches 1 with a rate much faster
than 1 − O

(
1√
mn

)
, however we will not go further in that direction. For the linking number

computation, we used the algorithm described in [11], which is based on the Gaussian integral
form of the linking number. In our numerical studies in the following section, the sample size
is set to achieve convergence. For most cases, it turns out that 50 000 is enough. For example,
each of the linking number distributions shown in figure 5 for n = 20, 40 and 80 is based on
a sample of size 50 000.

6. Numerical results

A. Our first numerical study concerns the linking between a uniform random polygon and a
fixed equatorial flat curve. By theorem 3, this linking probability should grow at a rate as least
as fast as 1−O

(
1√
n

)
. For comparison with this analytical result, we calculated the probability

of having a non-zero linking number between a uniform random polygon of varying length
and a fixed closed curve lying flat in the equatorial plane of the cube E = R

2 × {
1
2

}
. To

illustrate that the dependence of this probability on the dimensions of the curve does not affect
the general trend (a claim of the theorem), we consider four squares on the plane E with
different sizes, given below by their two diagonal vertices:

(a) (.1, .1, .5), (.9, .9, .5); (b) (.2, .2, .5), (.8, .8, .5);
(c) (.3, .3, .5), (.7, .7, .5); (d) (.4, .4, .5), (.6, .6, .5).

Results are shown in figure 4. Each curve in the figure is fitted to a curve of the form 1− a√
n

,
where a is estimated to be 2.010 ± 0.011, 1.284 ± 0.012, 1.316 ± 0.010 and 2.249 ± 0.011
corresponding to (a) through (d) respectively in that order. Clearly, while the position and size
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Figure 5. Distribution of linking numbers between two uniform random polygons with
n = 10, 20, 40 and 80 vertices.

of the fixed close curve do affect the linking probability (visible for small values of n in the
figure), the overall trend of the form 1 − O

(
1√
n

)
is strongly supported by the data.

B. Our second numerical study concerns the distribution of linking numbers between two
uniform random polygons of equal length, as well as the probability that the linking number
between two such uniform random polygons is not zero. Samples were drawn independently
for both uniform random polygons. The plot of distribution of linking numbers is shown in
figure 5 for three different values of n.

As expected, it is more likely for shorter polygons to have linking number zero. One
would of course also expect that the actual linking probability for shorter polygons to be
smaller as well. However, in order to determine whether two polygons are nontrivially linked
when the linking number between them is zero, we would have to resolve to the use of knot
polynomials, which is beyond the scope of this paper. Instead, we focused our investigation to
P(linking # �= 0), since P(linking # �= 0) is a lower bound for the actual linking probability
and we believe that P(linking # �= 0) converges to 1 fairly fast so it does provide a good
estimate for the topological linking probability. Results are shown in figure 6. We observe
that P(linking # �= 0) behaves as 1 − b

n
, where n is the number of vertices of the two uniform

random polygons and b is estimated to be about
√

10.

C. The numerical result in part B suggests that P(linking # �= 0) between two uniform
random polygons of n vertices follows the rate 1 − b

n
. For two uniform random polygons with

different number of vertices, this suggests that P(linking # �= 0) should behave like 1 − b√
nm

,
at least for large values of m and n, where n,m are the numbers of vertices of the two polygons
respectively. We thus simulated P(linking # �= 0) for m, n = 10 up to 100.

Figure 7 shows our numerical result on P(linking # �= 0) between two uniform random
polygons of different lengths (grey) as well as the 3D plot of the function 1 − b√

nm
(red) with

b = √
10. The simulation result clearly suggests that 1− b√

nm
as a lower bound for the linking

probability between two uniform random polygons, one with m vertices and the other with n
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Figure 6. Probability of getting a zero linking number between two uniform random polygons.
The number n of vertices considered in the simulations varied from n = 10 up to 100. The curve

is the graph of 1 −
√

10
n

.

Figure 7. Three dimensional plot of the P(Linking # �= 0) between two uniform random polygons
with different number of vertices. The x and y axes represent the number of vertices for the two
polygons. The red surface is the lower bound estimated analytically. The grey curve was obtained
by computer simulations.

vertices. Note that for larger n and m values, the difference between our numerical result and
the function 1 − b√

nm
is much smaller, suggesting that 1 − b√

nm
is a better model for larger

n,m values only. However, even when m is fixed, 1 − b√
nm

still serves as a good lower bound
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Figure 8. The mean squared linking number. Values of 〈Lk2〉 obtained by computer simulations
are shown in blue. The continuous curve shows the theoretical value by 1

2 qn2.

of the linking probability since the behaviour of 1 − b√
nm

is the same as 1 − O( 1√
n
) in this

case, which coincide with our theoretical result obtained in section 4.

D. Our last numerical study confirms that the growth rate of the mean squared linking
number follows the theoretically predicted growth rate 1

2qn2. We estimated that q ≈ 0.0338.
Results are shown in figure 8 where we show the 〈Lk2〉.

7. Conclusion

Little is known of the physical properties of polymers when confined to small volumes. In
this paper, we have presented a detailed analysis of the linking probability of two curves in
confined volumes under the URP model. We have given a rigorous proof of the asymptotic
behaviour of the probability of linking between a curve of fixed length and a random curve.
We have also investigated numerically the asymptotic behaviour of two random polygons and
concluded that the rate is at least 1 − O

(
1√
nm

)
. Although we have restricted ourselves to

cases where polygons are confined to boxes, our results remain true for other convex volumes.
Our results can also be applied to study the particular case observed in synthetic polymers
where polymer branches extend from the crystalline to the amorphous phase. This can be
achieved by rooting the polygonal chains to the surfaces of the box. We intend to carry out
more theoretical and numerical studies in this direction in the future.

Our results may be of special importance in biological systems where DNA molecules
are confined to very small volumes. For instance, if we were to compare the volume occupied
by the human genome and that of a random polygon of equal length we would find a reduction
of the order of 10 000 times [9]. Furthermore, it has recently been proposed that the degree
of intermingling between any chromosome with the rest of the genome during interphase may
be higher than expected, reaching up to 40% of the volume of the chromosome [2]. These
biological observations suggest that the linking of DNA chains may be relevant also in higher
organisms. This is also an area for our future study.



1936 J Arsuaga et al

Although intuition as well as our numerical results strongly suggests that the linking
probability between two uniform random polygons tends to 1 as the number of the vertices of
the polygons approaches infinity, a theoretical proof remains a challenge at this time and we
intend to make progress towards it in our future research.
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